Lawrence Livermore National Laboratory

Spiked Alloy Production

31 August – 04 September 2009, Prague, ČR Advances in Materials Science

Philip A. Wilk, Ph.D.
Chemist

Collaborators

- J. A. McNeese, K. E. Dodson, W. L. Williams,
 - O. H. Krikorian, M. S. Blau, J. E. Schmitz, F. G. Bajao,
 - D. A. Mew
 - Plutonium Processing
- T. E. Matz
 - Machining
- R. A. Torres, K. J. Moody, J. M. Kenneally
 - Chemical and Isotopic Analysis

Philip A. Wilk

Background and Objective

- Plutonium metal in our nuclear stockpile is aging with time because the plutonium undergoes alpha decay, which leads to structural damage in the material.
 - The primary aging effects are believed to be helium bubble formation and void swelling.
- In order to study the accelerated aging of plutonium, an isotope of plutonium with a much higher activity, ²³⁸Pu (also an alpha emitter), is used to spike plutonium alloys.
 - The aging in a 7.5% ²³⁸Pu-spiked plutonium alloy is about 16 times faster than in weapons grade plutonium.
- By monitoring the aging of ²³⁸Pu-spiked plutonium alloys for just a few years, we will be able to predict the aging behavior of plutonium in nuclear weapons over periods of 50 years or more.

²³⁸Pu spiked alloy test specimens are produced to accelerate the effects of aging on plutonium

The spiked alloy is produced by calcium reduction of plutonium oxide

- PuO₂ (including ²³⁸PuO₂) is reduced to metal by Direct Oxide Reduction (DOR)
 - Primary reaction takes place in molten CaCl₂ at ~900 °C:

$$PuO_2 + 2Ca^o \rightarrow Pu^o + 2CaO$$

- Reaction is spontaneous with $\Delta G_r^{\circ} = -47 \text{ kcal/mole PuO}_2$
- Salt Scrub (SC) is a procedure similar to DOR that is used after DOR to recover any Pu or PuO₂ left behind in the CaCl₂ salt phase

DOR Product Metal Button

Daughter decay products and other impurities are removed from the metal by electrorefining

- Electrorefining is used to separate plutonium from impurities by transferring plutonium ions through a molten electrolytic bath using a voltage that is selective for plutonium.
- The purified plutonium metal is produced in a ring shape.

The electrorefining cell operates at 900°C and uses a CaCl₂ electrolyte

Electrorefined product

"Cookies" are cast in a graphite mold

- Mold
 - LANL/LLNL design
 - Yttria coated graphite
 - One to ten cookies can be cast in each casting operation
- Cookie dimensions: 1.5" diameter by 3/8" height
- Cookie weight: ~179 grams
- Cast cookie surface is machined to remove excessive graphite and yttria

Philip A. Wilk

The spiked alloy is cast into desired shapes

- The Pu alloy is cast into a Y₂O₃-coated graphite (for "cookies") molds.
- The "cookies" mold is held at 700 °C. After casting, the mold temperature is lowered and held for an hour to stabilize the δ-Pu phase, and then cooled.
- The graphite "cookie" molds are a stack of up to 10 "cups." The cups have a hole in the bottom for flow through of the pour. Each cup forms a Pu alloy cookie, 1.5" in diameter by 3/8" high.
- After casting, the molds are broken and the cookies removed.
- The cookies are now reannealed for an hour. They are then rolled to thin the cookies into 3.2 mm thick discs. After rolling, the discs are annealed for 12 hours.

Surface Machined "Cookies"

Cast cookies are rolled to disks and annealed in a furnace

Test specimens are fabricated in a glove box dedicated to ²³⁸Pu operations

- Servo "Impact" CNC mill
- CNC Omni-Turn Lathe
- Struers Minitom cutoff saw

- Heidenheim height gage
- Incubator
- Granite block for lapping

Several different cutting patterns are used to obtain desired test specimens

Lawrence Livermore National Laboratory

A CNC lathe is used for final machining of test specimens

Density

Tensile Test Specimen

Dynamic Testing

Dilatometer Test Specimens

Annealed disks and test specimens are stored in an incubator at 50°C

• Techne Dri-block

 Evacuated and backfilled with high purity helium

Rolled and annealed 7.5 wt% ²³⁸Pu disk

50°C was chosen as the annealing temperature because it was determined that this was optimum for obtaining a balance between defect generation and annihilation

Analytical data on prepared alloys are within desired range

	Reference	Spiked	Spiked	
Element	Alloy #1	Alloy #1	Alloy #2	Units
Al	ND	<20	ND	ppm
V	D	D	D	ppm
Cr	D	D	D	ppm
Mn	ND	ND	D	ppm
Fe	410(30)	404(33)	217(18)	ppm
Ni	D	D	D	ppm
Cu	ND	ND	ND	ppm
Ga	D	D	D	ppm
Υ	ND	33(24)	10(11)	ppm
Та	ND	52(72)	26(3)	ppm
²³² Th	ND	ND	D	ppm
²³³ U	ND	ND	ND	ppm
²³⁴ U	3(1)	181(44)	129(10)	ppm
²³⁵ U	80(2)	9(2)	6(.5)	ppm
²³⁷ Np	11(1)	66(1)	31(2)	ppm
²³⁸ UPu	0.013(.005)	7.43(.06)	7.26(.08)	atom%
²³⁹ Pu	93.8(.1)	86.8(.1)	86.99 (0.05)	atom%
²⁴⁰ Pu	6.00(.05)	5.56(.06)	5.54(.05)	atom%
²⁴¹ PuAm	0.174(.005)	0.150(.006)	.142(.002)	atom%
²⁴² Pu	0.047(.005)	0.057(.004)	.054(.001)	atom%

We've met the challenge!

- We have made ²³⁸Pu-spiked plutonium samples to accelerate the aging behavior
- We have characterized these ²³⁸Pu-spiked alloys and they look like reference stockpile material
- Co-Authors and Collaborators:
 - P. A. Wilk, J. A. McNeese, K. E. Dodson, W. L. Williams,
 - O. H. Krikorian, M. S. Blau, J. E. Schmitz, F. G. Bajao, D. A. Mew,
 - T. E. Matz, R. A. Torres, D. M. Holck, K. J. Moody, J. M. Kenneally

